Python matplotlibを使って学ぶ統計処理 正規分布 新しいページはコチラ

提供: yonewiki
移動: 案内, 検索
(分散値を求める式から確率密度関数に平均値変数と分散値変数を含めた積分して1になる係数をもつ式を求める)
(作りたい関数の方針〜求めるべき係数)
31行: 31行:
 
 3.<ymath>$ \int ^{\infty }_{-\infty } f( x) $</ymath>で積分すると1<span>(</span>グラフで言うと関数の描く曲線がy=0の線と囲まれているところの面積が1ということ<span>)</span>になる。
 
 3.<ymath>$ \int ^{\infty }_{-\infty } f( x) $</ymath>で積分すると1<span>(</span>グラフで言うと関数の描く曲線がy=0の線と囲まれているところの面積が1ということ<span>)</span>になる。
  
 +
 +
 [[Python_matplotlibで学ぶ…グラフ描画プログラム]]
  
 
 上記のようなことをみたす関数を考えると<ymath>$ a^{-x^{2}} $</ymath>のような関数であれば急激に0に近づく関数として適切であることが、予想できます。例えば<ymath>$ a = 2 $</ymath>と固定してみた場合<ymath>$ x $</ymath>が<ymath>$ -4, -3, -2, -1, 0, 1, 2, 3, 4, $</ymath>…のように変化すると、<ymath>$ 2^{-(16=(-4)*(-4))}=\frac{1}{2^{16}}, 2^{-9}=\frac{1}{2^{9}}, 2^{-4}=\frac{1}{2^{4}}, 2^{-1}=\frac{1}{2^{1}}, 2^{0}=1, 2^{-1}=\frac{1}{2^{1}}, 2^{-4}=\frac{1}{2^{4}}, 2^{-9}=\frac{1}{2^{9}}, 2^{-16}=\frac{1}{2^{16}} $</ymath>となることから予想は概ね正しいと言えることが分かってもらえると思います。
 
 上記のようなことをみたす関数を考えると<ymath>$ a^{-x^{2}} $</ymath>のような関数であれば急激に0に近づく関数として適切であることが、予想できます。例えば<ymath>$ a = 2 $</ymath>と固定してみた場合<ymath>$ x $</ymath>が<ymath>$ -4, -3, -2, -1, 0, 1, 2, 3, 4, $</ymath>…のように変化すると、<ymath>$ 2^{-(16=(-4)*(-4))}=\frac{1}{2^{16}}, 2^{-9}=\frac{1}{2^{9}}, 2^{-4}=\frac{1}{2^{4}}, 2^{-1}=\frac{1}{2^{1}}, 2^{0}=1, 2^{-1}=\frac{1}{2^{1}}, 2^{-4}=\frac{1}{2^{4}}, 2^{-9}=\frac{1}{2^{9}}, 2^{-16}=\frac{1}{2^{16}} $</ymath>となることから予想は概ね正しいと言えることが分かってもらえると思います。

2020年7月3日 (金) 00:00時点における版



個人用ツール
名前空間

変種
操作
案内
ツールボックス