Python matplotlibを使って学ぶ統計処理 正規分布 新しいページはコチラ

提供: yonewiki
移動: 案内, 検索
(求めるべき係数の算出の前に〜確率密度関数から考える期待値・平均値と分散値について)
(求めるべき係数の算出の前に〜確率密度関数から考える期待値・平均値と分散値について)
111行: 111行:
 
は確率密度関数で積分<span>(</span>グラフのプロットとy=0に囲まれた部分面積を求める操作でマイナス領域とプラス領域の差し引きをする<span>)</span>をすると1になるものですから、最終的には
 
は確率密度関数で積分<span>(</span>グラフのプロットとy=0に囲まれた部分面積を求める操作でマイナス領域とプラス領域の差し引きをする<span>)</span>をすると1になるものですから、最終的には
 
<big><ymath>$$ \int^{\infty}_{-\infty} \frac{1}{\sqrt{2\pi}\cancel{\sigma}}e^{-\frac{z^{2}}{2}}\cdot dz = 1 $$</ymath></big>
 
<big><ymath>$$ \int^{\infty}_{-\infty} \frac{1}{\sqrt{2\pi}\cancel{\sigma}}e^{-\frac{z^{2}}{2}}\cdot dz = 1 $$</ymath></big>
で、先程示された式は定数<ymath>$ \mu $</ymath>倍を使って積分する式<ymath>$ \int^{\infty}_{-\infty}\mu \cdot \frac{1}{\sqrt{2\pi}\cancel{\sigma}}e^{-\frac{z^{2}}{2}}\cdot dz $</ymath>と表現することができます。<ymath>$ \sqrt{2 \pi}\sigma $</ymath>の<ymath>$ \sigma $</ymath>はあっても無くてもゼロでなければグラフでは高さと広がりかたが変化するだけで、確率密度関数の積分は1になります。
+
で、先程示された式は定数<ymath>$ \mu $</ymath>倍を使って積分する式<ymath>$ \int^{\infty}_{-\infty}\mu \cdot \frac{1}{\sqrt{2\pi}\cancel{\sigma}}e^{-\frac{z^{2}}{2}}\cdot dz $</ymath>と表現することができます。確率密度関数の中の<ymath>$ \sqrt{2 \pi}\sigma $</ymath>の<ymath>$ \sigma $</ymath>はあっても無くてもゼロでなければグラフでは高さと広がりかたが変化するだけで、確率密度関数の積分は1になります。
 
<big><ymath>$$  \mu \cdot 1 $$</ymath></big>
 
<big><ymath>$$  \mu \cdot 1 $$</ymath></big>
 
となりますから、元々の式の計算結果は平均値を意味する<ymath>$ \mu $</ymath>であると言えます。確率密度関数<ymath>$ f(x) $</ymath>を<ymath>$ x $</ymath>倍したものの積分は<ymath>$ \mu $</ymath>になることが確認でき、
 
となりますから、元々の式の計算結果は平均値を意味する<ymath>$ \mu $</ymath>であると言えます。確率密度関数<ymath>$ f(x) $</ymath>を<ymath>$ x $</ymath>倍したものの積分は<ymath>$ \mu $</ymath>になることが確認でき、
200行: 200行:
 
定数倍部分を積分の外に出しても問題ないので外に出した表記にしてみます。
 
定数倍部分を積分の外に出しても問題ないので外に出した表記にしてみます。
 
<big><ymath>$$  \sigma^2 \cdot \int^{\infty}_{-\infty} z^2 \cdot \frac{1}{\sqrt{2\pi}\cancel{\sigma}} \cdot e^{-\frac{z^{2}}{2}}\cdot dz+ 2\sigma\mu \cdot \int^{\infty}_{-\infty}z \frac{1}{\sqrt{2\pi}\cancel{\sigma}} \cdot e^{-\frac{z^{2}}{2}}\cdot dz + \mu^2 \cdot \int^{\infty}_{-\infty} \frac{1}{\sqrt{2\pi}\cancel{\sigma}} \cdot e^{-\frac{z^{2}}{2}}\cdot dz $$</ymath></big>
 
<big><ymath>$$  \sigma^2 \cdot \int^{\infty}_{-\infty} z^2 \cdot \frac{1}{\sqrt{2\pi}\cancel{\sigma}} \cdot e^{-\frac{z^{2}}{2}}\cdot dz+ 2\sigma\mu \cdot \int^{\infty}_{-\infty}z \frac{1}{\sqrt{2\pi}\cancel{\sigma}} \cdot e^{-\frac{z^{2}}{2}}\cdot dz + \mu^2 \cdot \int^{\infty}_{-\infty} \frac{1}{\sqrt{2\pi}\cancel{\sigma}} \cdot e^{-\frac{z^{2}}{2}}\cdot dz $$</ymath></big>
真ん中の項は先の平均値の算出でやったとおり奇関数なので積分をすると0です。一番後ろの項は積分の部分が確率密度関数そのものなので1になります。で一番最初の項目がどうなるかを考えないといけないです。まずは整理したものを以下に記述すると
+
真ん中の項は先の平均値の算出でやったとおり奇関数なので積分をすると0です。一番後ろの項は積分の部分が確率密度関数そのものなので1になります。<ymath>$ \sqrt{2 \pi}\sigma $</ymath>の<ymath>$ \sigma $</ymath>はあっても無くてもゼロでなければグラフでは高さと広がりかたが変化するだけで、確率密度関数の積分は1になります。で、一番最初の項目がどうなるかを考えないといけないです。まずは整理したものを以下に記述すると
 
<big><ymath>$$  \sigma^2 \cdot \int^{\infty}_{-\infty} z^2 \cdot \frac{1}{\sqrt{2\pi}\cancel{\sigma}} \cdot e^{-\frac{z^{2}}{2}}\cdot dz+ 2\sigma\mu \cdot 0 + \mu^2 \cdot 1 $$</ymath></big>
 
<big><ymath>$$  \sigma^2 \cdot \int^{\infty}_{-\infty} z^2 \cdot \frac{1}{\sqrt{2\pi}\cancel{\sigma}} \cdot e^{-\frac{z^{2}}{2}}\cdot dz+ 2\sigma\mu \cdot 0 + \mu^2 \cdot 1 $$</ymath></big>
 
<big><ymath>$$  \sigma^2 \cdot \frac{1}{\sqrt{2\pi}\cancel{\sigma}} \cdot \int^{\infty}_{-\infty} z^2 \cdot e^{-\frac{z^{2}}{2}}\cdot dz+  0 + \mu^2  $$</ymath></big>
 
<big><ymath>$$  \sigma^2 \cdot \frac{1}{\sqrt{2\pi}\cancel{\sigma}} \cdot \int^{\infty}_{-\infty} z^2 \cdot e^{-\frac{z^{2}}{2}}\cdot dz+  0 + \mu^2  $$</ymath></big>

2020年5月8日 (金) 00:00時点における版



個人用ツール
名前空間

変種
操作
案内
ツールボックス