Python matplotlibを使って学ぶ統計処理 正規分布 新しいページはコチラ

提供: yonewiki
移動: 案内, 検索
(求めるべき係数の算出の前に〜確率密度関数から考える期待値・平均値と分散値について)
(求めるべき係数の算出の前に〜確率密度関数から考える期待値・平均値と分散値について)
239行: 239行:
 
<big><ymath>$$ \frac{dx}{dz} = \sigma $$</ymath></big>
 
<big><ymath>$$ \frac{dx}{dz} = \sigma $$</ymath></big>
 
 になるので、zで置換した積分の式に<ymath>$ \frac{dx}{dz}$</ymath>を掛けるのが置換積分ですから、以下のようになります。
 
 になるので、zで置換した積分の式に<ymath>$ \frac{dx}{dz}$</ymath>を掛けるのが置換積分ですから、以下のようになります。
<big><ymath>$$ \sigma^2 \cdot \frac{1}{\sqrt{2\pi}\sigma} \cdot \color{textred}{ \sigma } \textcolor{black}{ \cdot \int^{\infty}_{-\infty}-z e^{-\frac{z^{2}}{2}}\cdot dz } $$</ymath></big>
+
<big><ymath>$$ \sigma^2 \cdot \frac{1}{\sqrt{2\pi}\sigma} \cdot \textcolor{red}{ \sigma } \textcolor{black}{ \cdot \int^{\infty}_{-\infty}-z e^{-\frac{z^{2}}{2}}\cdot dz } $$</ymath></big>
 
 なので、
 
 なので、
 
<big><ymath>$$ \sigma^2 \cdot \frac{1}{\sqrt{2\pi}} \cdot (\int^{\infty}_{-\infty}-z e^{-\frac{z^{2}}{2}}\cdot dz $$</ymath></big>
 
<big><ymath>$$ \sigma^2 \cdot \frac{1}{\sqrt{2\pi}} \cdot (\int^{\infty}_{-\infty}-z e^{-\frac{z^{2}}{2}}\cdot dz $$</ymath></big>

2020年5月8日 (金) 00:00時点における版



個人用ツール
名前空間

変種
操作
案内
ツールボックス