Python matplotlibを使って学ぶ統計処理 正規分布 新しいページはコチラ

提供: yonewiki
移動: 案内, 検索
(求めるべき係数の算出の前に〜確率密度関数から考える期待値・平均値と分散値について)
(求めるべき係数の算出の前に〜確率密度関数から考える期待値・平均値と分散値について)
99行: 99行:
 
<big><ymath>$$  \int^{\infty}_{-\infty}\textcolor{red}{x(←(3)式)} \cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\color{blue}{\sigma^{2}}}\color{blue}{(x-\mu)^{2}(←(2)式)}}\cdot dx $$</ymath></big>
 
<big><ymath>$$  \int^{\infty}_{-\infty}\textcolor{red}{x(←(3)式)} \cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\color{blue}{\sigma^{2}}}\color{blue}{(x-\mu)^{2}(←(2)式)}}\cdot dx $$</ymath></big>
 
を上記のように適用すると
 
を上記のように適用すると
<big><ymath>$$  \int^{\infty}_{-\infty} (z \cdot \sigma + \mu) \cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{z^{2}}{2}}\cdot dz $$</ymath></big>
+
<big><ymath>$$  \int^{\infty}_{-\infty} (\color{red}{z \cdot \sigma + \mu}) \cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{\color{blue}{z^{2}}}{2}}\cdot dz $$</ymath></big>
 
となります。<span>(</span>2<span>)</span>式は<ymath>$ \frac{1}{\sigma^{2}}(x-\mu)^{2} $</ymath>を<ymath>$ z^{2} $</ymath>と置き換えてます。そして上記の式を分配法則<ymath>$ (a + b)x = ax + bx $</ymath>のような計算と同じ要領を適用して
 
となります。<span>(</span>2<span>)</span>式は<ymath>$ \frac{1}{\sigma^{2}}(x-\mu)^{2} $</ymath>を<ymath>$ z^{2} $</ymath>と置き換えてます。そして上記の式を分配法則<ymath>$ (a + b)x = ax + bx $</ymath>のような計算と同じ要領を適用して
 
<big><ymath>$$  \int^{\infty}_{-\infty} z \cdot \sigma \cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{z^{2}}{2}}\cdot dz + \int^{\infty}_{-\infty}\mu \cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{z^{2}}{2}}\cdot dz $$</ymath></big>
 
<big><ymath>$$  \int^{\infty}_{-\infty} z \cdot \sigma \cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{z^{2}}{2}}\cdot dz + \int^{\infty}_{-\infty}\mu \cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{z^{2}}{2}}\cdot dz $$</ymath></big>

2020年4月28日 (火) 00:00時点における版



個人用ツール
名前空間

変種
操作
案内
ツールボックス