Python matplotlibを使って学ぶ統計処理 正規分布 新しいページはコチラ

提供: yonewiki
移動: 案内, 検索
(■正規分布の確率密度を算出する式の作り方)
(求めるべき係数の算出の前に〜確率密度関数から考える期待値・平均値と分散値について)
99行: 99行:
 
上記のようになり、2つの積分の和の構造の最初の積分の部分はちょっと確かめれば原点を通過する奇関数と呼ばれる形式になっています。要するに積分をすると0になるということです。グラフをプロットして確かめてみると以下の通りです。
 
上記のようになり、2つの積分の和の構造の最初の積分の部分はちょっと確かめれば原点を通過する奇関数と呼ばれる形式になっています。要するに積分をすると0になるということです。グラフをプロットして確かめてみると以下の通りです。
 
<big><ymath>$$  0 + \int^{\infty}_{-\infty}\mu \cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{z^{2}}{2}}\cdot dz $$</ymath></big>
 
<big><ymath>$$  0 + \int^{\infty}_{-\infty}\mu \cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{z^{2}}{2}}\cdot dz $$</ymath></big>
となります。そうすると
+
となります。そうすると上記の式から<ymath>$ \mu $</ymath>を除いた部分
<big><ymath>$$ \int^{\infty}_{-\infty} \mu \cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{z^{2}}{2}}\cdot dz $$</ymath></big>
+
<big><ymath>$$ \int^{\infty}_{-\infty} \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{z^{2}}{2}}\cdot dz $$</ymath></big>
 
は確率密度関数で積分<span>(</span>グラフのプロットとy=0に囲まれた部分面積を求める操作でマイナス領域とプラス領域の差し引きをする<span>)</span>をすると1になるものですから、最終的には
 
は確率密度関数で積分<span>(</span>グラフのプロットとy=0に囲まれた部分面積を求める操作でマイナス領域とプラス領域の差し引きをする<span>)</span>をすると1になるものですから、最終的には
 +
<big><ymath>$$ \int^{\infty}_{-\infty} \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{z^{2}}{2}}\cdot dz = 1 $$</ymath></big>
 +
 
<big><ymath>$$  \mu \cdot 1 $$</ymath></big>
 
<big><ymath>$$  \mu \cdot 1 $$</ymath></big>
 
となりますから、元々の式の計算結果は平均値を意味する<ymath>$ \mu $</ymath>であると言えます。確率密度関数<ymath>$ f(x) $</ymath>を<ymath>$ x $</ymath>倍したものの積分は<ymath>$ \mu $</ymath>になることが確認でき、
 
となりますから、元々の式の計算結果は平均値を意味する<ymath>$ \mu $</ymath>であると言えます。確率密度関数<ymath>$ f(x) $</ymath>を<ymath>$ x $</ymath>倍したものの積分は<ymath>$ \mu $</ymath>になることが確認でき、

2020年4月24日 (金) 00:00時点における版



個人用ツール
名前空間

変種
操作
案内
ツールボックス