Python matplotlibを使って学ぶ統計処理 正規分布 新しいページはコチラ

提供: yonewiki
移動: 案内, 検索
(■正規分布の確率密度を算出する式の作り方)
(■正規分布の確率密度を算出する式の作り方)
19行: 19行:
  
 
 3.<ymath>$ \int ^{\infty }_{-\infty } f( x) $</ymath>で積分すると1<span>(</span>グラフで言うと関数の描く曲線がy=0の線と囲まれているところの面積が1ということ<span>)</span>になる。
 
 3.<ymath>$ \int ^{\infty }_{-\infty } f( x) $</ymath>で積分すると1<span>(</span>グラフで言うと関数の描く曲線がy=0の線と囲まれているところの面積が1ということ<span>)</span>になる。
 +
  
 
 上記のようなことをみたす関数を考えると<ymath>$ a^{-x^{2}} $</tmath>のような関数であれば急激に0に近づく関数として適切であることが、予想できます。例えば<ymath>$ a = 2 $</ymath>と固定してみた場合<ymath>$ x $</tmath>が<ymath>$ -4, -3, -2, -1, 0, 1, 2, 3, 4, $</ymath>…のように変化すると、<ymath>$ 2^{-(16=(-4)*(-4))}=\frac{1}{2^{16}}, 2^{-9}=\frac{1}{2^{9}}, 2^{-4}=\frac{1}{2^{4}}, 2^{-1}=\frac{1}{2^{1}}, 2^{0}=1, 2^{-1}=\frac{1}{2^{1}}, 2^{-4}=\frac{1}{2^{4}}, 2^{-9}=\frac{1}{2^{9}}, 2^{-16}=\frac{1}{2^{16}} $</ymath>となることから予想は概ね正しいと言えることが分かってもらえると思います。
 
 上記のようなことをみたす関数を考えると<ymath>$ a^{-x^{2}} $</tmath>のような関数であれば急激に0に近づく関数として適切であることが、予想できます。例えば<ymath>$ a = 2 $</ymath>と固定してみた場合<ymath>$ x $</tmath>が<ymath>$ -4, -3, -2, -1, 0, 1, 2, 3, 4, $</ymath>…のように変化すると、<ymath>$ 2^{-(16=(-4)*(-4))}=\frac{1}{2^{16}}, 2^{-9}=\frac{1}{2^{9}}, 2^{-4}=\frac{1}{2^{4}}, 2^{-1}=\frac{1}{2^{1}}, 2^{0}=1, 2^{-1}=\frac{1}{2^{1}}, 2^{-4}=\frac{1}{2^{4}}, 2^{-9}=\frac{1}{2^{9}}, 2^{-16}=\frac{1}{2^{16}} $</ymath>となることから予想は概ね正しいと言えることが分かってもらえると思います。
  
 さらに積分して1にする必要があるため、積分が簡単なように冪乗の底となる<ymath>$ a $</ymath>を積分しやすいように考えられたネイピア数<ymath>$ e $</ymath>を底とするために、<ymath>$ a = e^{\log_e a} $</ymath>のような式を使うことを考えるようにしてみます。
+
 
 +
 簡単な予想で形だけは近いグラフになる関数になりましたが、まだ積分が1になるようなグラフにはなっていないかもしれないです。グラフの山の高さと広がり方を調整しないと積分して1になる正規分布の確率密度を表すようなグラフを描いたことにはならないです。もう少し工夫が必要です。
 +
 
 +
 というわけで、さらに積分して1にする必要があるため、積分が簡単なように冪乗の底となる<ymath>$ a $</ymath>を積分しやすいように考えられたネイピア数<ymath>$ e $</ymath>を底とするために、<ymath>$ a = e^{\log_e a} $</ymath>のような式を使うことを考えるようにしてみます。
  
  

2020年4月19日 (日) 00:00時点における版



個人用ツール
名前空間

変種
操作
案内
ツールボックス