Ymath テスト 新しいページはコチラ
提供: yonewiki
8行: | 8行: | ||
\sum_{k=0}^{\infty} \frac{(2k)!}{2^{2k}(k!)^2} \frac{1}{2k+1} = | \sum_{k=0}^{\infty} \frac{(2k)!}{2^{2k}(k!)^2} \frac{1}{2k+1} = | ||
\prod_{k=1}^{\infty} \frac{4k^2}{4k^2 - 1} | \prod_{k=1}^{\infty} \frac{4k^2}{4k^2 - 1} | ||
+ | \] | ||
+ | </ymath> | ||
+ | <ymath> | ||
+ | \[ | ||
+ | \frac{\pi}{2} = | ||
+ | \left( \int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} dx \right)^2 = | ||
+ | \sum_{k=0}^{\infty} \frac{(2k)!}{2^{2k}(k!)^2} \frac{1}{2k+1} = | ||
+ | \prod_{k=1}^{\infty} \frac{4k^2}{4k^2 - 1} | ||
\] | \] | ||
</ymath> | </ymath> |