Ymath テスト 新しいページはコチラ
提供: yonewiki
| 1行: | 1行: | ||
| + | |||
| + | |||
| + | <syntaxhighlight lang="html4strict" line start="1"> | ||
| + | <HTML> | ||
| + | <HEAD> | ||
| + | <TITLE>TEST</TITLE> | ||
| + | </HEAD> | ||
| + | <BODY> | ||
| + | test | ||
| + | </BODY> | ||
| + | </HTML> | ||
| + | </syntaxhighlight> | ||
| + | |||
| + | |||
<ymath> | <ymath> | ||
相対性理論 $E = mc^2$ | 相対性理論 $E = mc^2$ | ||
| 10行: | 24行: | ||
\] | \] | ||
</ymath> | </ymath> | ||
| + | |||
<ymath> | <ymath> | ||
| − | |||
\[ | \[ | ||
| − | + | \frac{\pi}{2} = | |
| − | + | \left( \int_{0}^{\infty} \frac{\sin x}{\sqrt{x}} dx \right)^2 = | |
| − | + | \sum_{k=0}^{\infty} \frac{(2k)!}{2^{2k}(k!)^2} \frac{1}{2k+1} = | |
| − | + | \prod_{k=1}^{\infty} \frac{4k^2}{4k^2 - 1} | |
\] | \] | ||
| − | |||
</ymath> | </ymath> | ||